Three-point finite-difference schemes, Padé and the spectral Galerkin method. I. One-sided impedance approximation

نویسندگان

  • Vladimir Druskin
  • Shari Moskow
چکیده

A method for calculating special grid placement for three-point schemes which yields exponential superconvergence of the Neumann to Dirichlet map has been suggested earlier. Here we show that such a grid placement can yield impedance which is equivalent to that of a spectral Galerkin method, or more generally to that of a spectral Galerkin-Petrov method. In fact we show that for every stable Galerkin-Petrov method there is a threepoint scheme which yields the same solution at the boundary. We discuss the application of this result to partial differential equations and give numerical examples. We also show equivalence at one corner of a two-dimensional optimal grid with a spectral Galerkin method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ALEX BELYAEV: ON IMPLICIT IMAGE DERIVATIVES AND THEIR APPLICATIONS 1 On Implicit Image Derivatives and Their Applications

The paper demonstrates advantages of using implicit finite differences for fast, accurate, and reliable differentiating and filtering of multidimensional signals defined on regular grids. In particular, applications to image enhancement and edge detection problems are considered. The theoretical contribution of the paper is threefold. The first adapts the Fourier-Padé-Galerkin approximations ap...

متن کامل

Gaussian Spectral Rules for the Three-Point Second Differences: I. A Two-Point Positive Definite Problem in a Semi-Infinite Domain

We suggest an approach to grid optimization for a second order finite-difference scheme for elliptic equations. A model problem corresponding to the three-point finite-difference semidiscretization of the Laplace equation on a semi-infinite strip is considered. We relate the approximate boundary Neumann-to-Dirichlet map to a rational function and calculate steps of our finite-difference grid us...

متن کامل

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

On the spurious solutions in the high-order finite difference methods for eigenvalue problems

In this paper, the origins of spurious solutions occurring in the high-order finite difference methods are studied. Based on a uniform mesh, spurious modes are found in the high-order one-sided finite difference discretizations of many eigenvalue problems. Spurious modes are classified as spectral pollution and non-spectral pollution. The latter can be partially avoided by mesh refinement, whil...

متن کامل

On Fully Discrete Galerkin Approximations for Partial Integro-differential Equations of Parabolic Type

The subject of this work is the application of fully discrete Galerkin finite element methods to initial-boundary value problems for linear partial integro-differential equations of parabolic type. We investigate numerical schemes based on the Padé discretization with respect to time and associated with certain quadrature formulas to approximate the integral term. A preliminary error estimate i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2002